viernes, 8 de junio de 2007

ejercicio de reforzamiento

bueno mi experiencia en este ejercicio fue que de primero yo no sabia ni que onda con lo que ibamos ha hacer porque yo ese dia no fui y en clase hablaban e este tema y yo no sabia nada ni que era pero ps tuve que preguntar pero yo seguia sin entender nada hasta que me tuvieron que explicar con manzanas jaja. y aun asi no entendia todo por completo pero hasta que al fin pude y aqui esta lo que conteste bueno eso es todo.

Correct! Well done.Your score is 80%.

Complete con la palabra correcta la frase


faraday descubrió que cuando un conductor corta las líneas de flujo magnético, se produce una fem entre los extremos de dicho conductor.

La ley de lenz enuncia que una corriente inducida fluirá en una dirección tal que por medio de su campo magnético se opondrá al movimiento del campo magnético que la produce.

El henry es la unidad de la inductancia

capacitor es sinónimo de condensador

viernes, 25 de mayo de 2007

LEY DE LENZ

Ley de Lenz nos dice que las fuerzas electromotrices o las corrientes inducidas serán de un sentido tal que se opongan a la variación del flujo magnético que las produjeron. Esta ley es una consecuencia del principio de conservación de la energía.

La polaridad de una FEM inducida es tal, que tiende a producir una corriente, cuyo campo magnético se opone siempre a las variaciones del campo existente producido por la corriente original.

"El sentido de una corriente inducida es tal que se opone a la causa que lo produce". CAUSA: MOVIMIENTO DE UN CONDUCTOR EN UN CAMPO MAGNÉTICO:

1º Causa:





La corriente i ha de tener un sentido tal que la fuerza que actúe sobre el conductor debida a esta corriente, por estar en presencia de ha de ser opuesta a



2 Causa:




La corriente i ha de tener un sentido tal que el momento sobre la espira se oponga al sentido de la rotación En la figura vemos por el par de fuerzas y también a través del momento dipolar magnético:





CAUSA: LA VARIACIÓN DE FLUJO MAGNÉTICO A TRAVÉS DE UN CIRCUITO FIJO



La corriente inducida i ha de tener un sentido tal que el campo magnético creado por esta corriente en el interior del circuito, se oponga al campo en el caso en que y aumenta el campo Ben el caso en que





















































































miércoles, 2 de mayo de 2007




REFRACCIÓN




Es el cambio de dirección que experimenta un rayo de luz cuando pasa de un medio transparente a otro también transparente. Este cambio de dirección está originado por la distinta velocidad de la luz en cada medio.






rayo incidente: El rayo de luz que se atraviesa de un medio transparente a otro.






rayo refractado: el rayo de luz que se desvía al ingresar al segundo medio transparente






ángulo de incidencia: el ángulo en que el rayo incidente, al ingresar al segundo medio, forma con la perpendicular al mismo






ángulo de refracción: el ángulo que el rayo incidente forma con el rayo refractado, al desviarse










ÍNDICE DE REFRACCIÓN



Se llama índice de refracción absoluto "n" de un medio transparente al cociente entre la velocidad de la luz en el vacío ,"c", y la velocidad que tiene la luz en ese medio, "v". El valor de "n" es siempre adimensional y mayor que la unidad, es una constante característica de cada medio: n = c/v.




Se puede establecer una relación entre los índices de los dos medios n2 y n1. En el applet de esta práctica se manejan estas relaciones



REFRACCIÓN: LEYES





1.- El rayo incidente, la normal y el rayo refractado pertenecen al mismo plano





2.- La razón o cociente entre el seno del ángulo de incidencia y el seno del ángulo de refracción es una constante, llamada índice de refracción, del segundo medio respecto del primero o sea:
Consideremos dos medios caracterizados por índices de refracción n1 y n2 separados por una superficie S y en los cuales n2 > n1. Los rayos de luz que atraviesen los dos medios se refractarán en la superficie variando su dirección de propagación dependiendo de la diferencia entre los índices de refracción n1 y n2.
Para un rayo luminoso con un ángulo de incidencia θ1 sobre el primer medio, ángulo entre la normal a la superficie y la dirección de propagación del rayo, tendremos que el rayo se propaga en el segundo medio con un ángulo de refracción θ2 cuyo valor se obtiene por medio de la ley de Snell.
Observese que para el caso de θ1 = 0° (rayos incidentes de forma perpendicular a la superficie) los rayos refractados emergen con un ángulo θ2 = 0° para cualquier n1 y n2. Es decir los rayos que inciden perpendicularmente a un medio no se refractan.
La simetría de la ley de Snell implica que las trayectorias de los rayos de luz es reversible. Es decir, si un rayo incidente sobre la superficie de separación con un ángulo de incidencia θ1 se refracta sobre el medio con un ángulo de refracción θ2, entonces un rayo incidente en la dirección opuesta desde el medio 2 con un ángulo de incidencia θ2 se refracta sobre el medio 1 con un ángulo θ1.
Una regla cualitativa para determinar la dirección de la refracción es que el rayo en el medio de mayor índice de refracción se acerca siempre a la dirección de la normal a la superficie. La velocidad de la luz en el medio de mayor índice de refracción es siempre menor.
La ley de Snell se puede derivar a partir del principio de Fermat, que indica que la trayectoria de la luz es aquella en la que los rayos de luz necesitan menos tiempo para ir de un punto a otro. En una analogía clásica propuesta por el físico Richard Feynman, el área de un índice de refracción más bajo es substituida por una playa, el área de un índice de refracción más alto por el mar, y la manera más rápida para un socorrista en la playa de rescatar a una persona que se ahoga en el mar es recorrer su camino hasta ésta a través de una trayectoria que verifique la ley de Snell, es decir, recorriendo mayor espacio por el medio más rápido y menor en el medio más lento girando su trayectoria en la intersección entre ambos.










Ley de Snell:


Esta importante ley, llamada así en honor del matemático holandés Willebrord van Roijen Snell, afirma que el producto del índice de refracción del primer medio y el seno del ángulo de incidencia de un rayo es igual al producto del índice de refracción del segundo medio y el seno del ángulo de refracción. El rayo incidente, el rayo refractado y la normal a la superficie de separación de los medios en el punto de incidencia están en un mismo plano. En general, el índice de refracción de una sustancia transparente más densa es mayor que el de un material menos denso, es decir, la velocidad de la luz es menor en la sustancia de mayor densidad. Por tanto, si un rayo incide de forma oblicua sobre un medio con un índice de refracción mayor, se desviará hacia la normal, mientras que si incide sobre un medio con un índice de refracción menor, se desviará alejándose de ella. Los rayos que inciden en la dirección de la normal son reflejados y refractados en esa misma dirección.Para un observador situado en un medio menos denso, como el aire, un objeto situado en un medio más denso parece estar más cerca de la superficie de separación de lo que está en realidad. Un ejemplo habitual es el de un objeto sumergido, observado desde encima del agua, como se muestra en la figura 3 (sólo se representan rayos oblicuos para ilustrar el fenómeno con más claridad). El rayo DB procedente del punto D del objeto se desvía alejándose de la normal, hacia el punto A. Por ello, el objeto parece situado en C, donde la línea ABC

http://html.rincondelvago.com/refraccion.html

viernes, 20 de abril de 2007

TEORIA DE LA LUZ

TEORÍA CORPUSCULAR

Newton descubre en 1666 que la luz natural, al pasar a través de un prisma es separada en una gama de colores que van desde el rojo al azul. Newton concluye que la luz blanca o natural está compuesta por todos lo colores del arco iris.
Isaac Newton propuso una teoría corpuscular para la luz en contraposición a un modelo ondulatorio propuesto por Huygens. Supone que la luz está compuesta por una granizada de corpusculos o partículas luminosos, los cuales se propagan en línea recta , pueden atravesar medios transparentes y ser reflejados por materias opacas. Esta teoría explica la propagación rectilínea de la luz, la refracción y reflexión; pero no explica los anillos de Newton (irisaciones en las láminas delgadas de los vidrios), que sí lo hace la teoría de Huygens como veremos más adelante, ni tampoco los fenómenos de interferencia y difracción.
Newton, experimentalmente demostró que la luz blanca, al traspasar un prisma, se dispersa en rayos de colores y que éstos, a su vez, al pasar por un segundo prisma no se descomponen, sino que son homogéneos. De esta descomposición de la luz deduce y demuestra que al dejar caer los rayos monocromáticos sobre un prisma, éstos se recombinan para transformarse en luz blanca. Se desprende así que ésta resulta de una combinación varia de rayos coloreados que poseen diferentes grados de refrangibilidad; desde el violeta –el más refrangible- hasta el rojo –que tiene el menor índice de refracción -. La banda de los colores prismáticos forma el espectro, cuya investigación y estudio conduciría, en la segunda mitad del siglo XIX, a varios hallazgos ribeteados con el asombro.


TEORÍA ONDULATORIA

Propugnada por
Christian Huygens en el año 1678, describe y explica lo que hoy se considera como leyes de reflexión y refracción. Define a la luz como un movimiento ondulatorio semejante al que se produce con el sonido. Ahora, como los físicos de la época consideraban que todas las ondas requerían de algún medio que las transportaran en el vacío, para las ondas lumínicas se postula como medio a una materia insustancial e invisible a la cual se le llamó éter (cuestión que es tratada con mayores detalles en la separata 4.03 de este mismo capítulo).
Justamente la presencia del éter fue el principal medio cuestionado de la teoría ondulatoria. En ello, es necesario equiparar las vibraciones luminosas con las elásticas transversales de los sólidos sin que se transmitan, por lo tanto, vibraciones longitudinales. Aquí es donde se presenta la mayor contradicción en cuanto a la presencia del éter como medio de transporte de ondas, ya que se requeriría que éste reuniera alguna característica sólida pero que a su vez no opusiera resistencia al libre transito de los cuerpos sólidos. (Las ondas transversales sólo se propagan a través de medios sólidos.)
TEORÍA ELECTROMAGNÉTICA

Descubre que la perturbación del campo electromagnético puede propagarse en el espacio a una velocidad que coincide con la de la luz en el vacío, equiparando por tanto las ondas electromagnéticas con las ondas luminosas.Por otra parte, la luz es una parte insignificante del espectro electromagnético. Más allá del rojo está la radiación infrarroja; con longitudes de ondas aún más largas la zona del infrarrojo lejano, las microondas de radio, y luego toda la gama de las ondas de radio, desde las ondas centimétricas, métricas, decamétricas, hasta las ondas largas de radiocomunicación, con longitudes de cientos de metros y más. Por ejemplo, el dial de amplitud modulada, la llamada onda media, va desde 550 y 1.600 kilociclos por segundo, que corresponde a una longitud de onda de 545 a 188 metros, respectivamente.



http://www.astrocosmo.cl/electrom/electrom-02.htm.

martes, 10 de abril de 2007

Ley Cero de la Termodinámica

"Si dos objetos A y B están por separado en equilibrio térmico con un tercer objeto C, entonces los objetos A y B están en equilibrio térmico entre sí".
Como consecuencia de esta ley se puede afirmar que dos objetos en equilibrio térmico entre sí están a la misma temperatura y que si tienen temperaturas diferentes, no se encuentran en equilibrio térmico entre sí.
http://jfinternational.com/mf/tercera-ley-termodinamica.html


Enunciados de la segunda ley de la termodinámica

Clausius:
“No es posible para una máquina cíclica llevar continuamente calor de un cuerpo a otro que esté a temperatura más alta, sin que al mismo tiempo se produzca otro efecto (de compensación).”


Kelvin:
“es completamente imposible realizar una transformación cuyo único resultado final sea el de cambiar en trabajo el calor extraído de una fuente que se encuentre a la misma temperatura.”

http://www.monografias.com/trabajos/termodinamica/termodinamica.shtml


Muerte térmica del universo

la entropía global del Universo también aumenta. Como la flecha del flujo del tiempo es irreversible, la flecha de flujo de la entropía también es irreversible. En el Universo, la cantidad de energía útil disminuye paulatinamente y aumenta la forma degradada de energía. Dado que la entropía global siempre está en constante aumento, causará en algún momento el desplome térmico de todos los biosistemas en el Universo conocido, fenómeno conocido como Muerte Térmica del Biocosmos. Fin del Universo, de la vida, del tiempo y también de la entropía, según el actual modelo cosmológico.

http://www.monografias.com/trabajos/termodinamica/termodinamica.shtml




Proceso adiabático

En termodinámica se designa como proceso adiabático a aquel en el cual el sistema (generalmente, un fluido que realiza un trabajo) no intercambia calor con su entorno. Un proceso adiabático que es además reversible se conoce como proceso isentrópico. El extremo opuesto, en el que tiene lugar la máxima transferencia de calor, causando que la temperatura permanezca constante, se denomina como proceso isotérmico.
El término adiabático hace referencia a elementos que impiden la transferencia de calor con el entorno. Una pared aislada se aproxima bastante a un límite adiabático.

Proceso no adiabático:

http://es.wikipedia.org/wiki/Proceso_adiabático


Energía interna de un sistema

La energía interna de un sistema, es el resultado de la energía cinética de las moléculas o átomos que lo constituyen, de sus energías de rotación y vibración, además de la energía potencial intermolecular debida a las fuerzas de tipo gravitatorio, electromagnético y nuclear, que constituyen conjuntamente las interacciones fundamentales. Al aumentar la temperatura de un sistema, sin que varíe nada más, aumenta su energía interna.

http://es.wikipedia.org/wiki/Energía_interna


Fuentes de Energía Térmica

Energía nuclear: Energía liberada durante la fisión o fusión de núcleos atómicos. Las cantidades de energía que pueden obtenerse mediante procesos nucleares superan con mucho a las que pueden lograrse mediante procesos químicos, que sólo implican las regiones externas del átomo.
Ventajas: se manifiesta por su capacidad de realizar trabajo o liberar calor o radiación. La energía total de un sistema siempre se conserva, pero puede transferirse a otro sistema o convertirse de una forma a otra.

Energía potencial: Energía almacenada que posee un sistema como resultado de las posiciones relativas de sus componentes
Ventajas: la cantidad de energía potencial que posee un sistema es igual al trabajo realizado sobre el sistema para situarlo en cierta configuración. La energía potencial también puede transformarse en otras formas de energía. Por ejemplo, cuando se suelta una pelota situada a una cierta altura, la energía potencial se transforma en energía cinética.

Energía cinética: Energía que un objeto posee debido a su movimiento. La energía cinética depende de la masa y la velocidad del objeto según la ecuación
Ventajas: Cuando el objeto se levanta desde una superficie se le aplica una fuerza vertical. Al actuar esa fuerza a lo largo de una distancia, se transfiere energía al objeto. La energía asociada a un objeto situado a determinada altura sobre una superficie se denomina energía potencial. Si se deja caer el objeto, la energía potencial se convierte en energía cinética.

martes, 27 de marzo de 2007

bienvenidos


hola bienvenidos a mi blog

ahi le ponen comentarios